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Let’s see something cool
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https://thispersondoesnotexist.com/


GANs

1 Popular framework for learning high-dimensional densities

2 Proposed by Goodfellow et al. (2014)
3 Non-parametric (implicit) density modeling
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GANs

1 Two neural networks are trained jointly

2 Discriminator D classifies samples: real versus fake
3 Generator G produces samples (maps a simple, fixed distribution to

generated samples)
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GANs

Figure credits: Francois Fleuret
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GANs

Framework is adversarial: Both the modules have conflicting objectives.

Figure credits: Francois Fleuret
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GANs

If X is the data space and D is the dimension of the latent space,
1 Generator G : RD → X

2 Maps a random normal sample to data distribution
3 Discriminator D : X → [0, 1]
4 Takes a sample as input and predicts if it comes from G or the actual

data distribution
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GANs
1 If G is fixed, D can be trained by taking

real samples xn ∼ µ, n = 1, 2, . . . , N
fake samples generated by the G, zn ∼ N (0, I), n = 1, 2, . . . , N
Two class classification dataset D =
{(x1, 1), (x2, 1), . . . , (xn, 1), (G(z1), 0), (G(z2), 0), . . . , (G(zn), 0)}

2 Minimize the binary cross entropy loss

L(D) = − 1
2N

( N∑
1
log(D(xn)) +

N∑
1
log(1−D(G(zn)))

)

= −1
2

(
EX∼µ

[
log(D(X))

]
+ EX∼µG

[
log(1−D(X))

])
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GANs

1 Loss for training the Generator G is negation of that of D

L(G) =1
2

(
EX∼µ

[
log(D(X))

]
+ EX∼µG

[
log(1−D(X))

])
=1

2EX∼µG

[
log(1−D(X))

]

2 In practice, initial fake samples are very poor that D response is
saturated and log(1−D(X)) generates zero gradients → Goodfellow
et al. suggest to use −log(D(X))
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GANs

Dr. Konda Reddy Mopuri dlc-9.1/GANs 10



Deep Convolutional GANs

1 Proposed by Radford et al. (2015)

2 Scales GANs to generating realistic images
3 Uses convolution and transposed convolution layers
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Deep Convolutional GANs
1 Architecture of Generator (G) (Radford et al. 2015)

2 D is a binary CNN classifier (typically doesn’t use fc layers and
pooling layers)

3 Batch Normalization layers are used, ReLU for G, leakyReLU for D
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Deep Convolutional GANs
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GAN training pathologies

1 Loss oscillation as opposed to a convergence

2 Mode collapse: G learns models only a portion of real data distribution
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Quality assessment of GANs

1 Inception score (Salimans et al. 2016) → verifies the posterior
distribution of fake images is similar to that of real data (penalizes
missing classes)

2 Fréchet Inception Distance (FID) (Heusel et al. 2017) → evaluates
the similarity between distributions of the features in one of the
feature maps

3 Assessment is often deals aesthetic evaluation of the generated
samples
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